gTRICLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data
نویسندگان
چکیده
Clustering is an important technique in microarray data analysis, and mining three-dimensional (3D) clusters in gene-sample-time (simply GST) microarray data is emerging as a hot research topic in this area. A 3D cluster consists of a subset of genes that are coherent on a subset of samples along a segment of time series. This kind of coherent clusters may contain information for the users to identify useful phenotypes, potential genes related to these phenotypes and their expression rules. TRICLUSTER is the state-of-the-art 3D clustering algorithm for GST microarray data. In this paper, we propose a new algorithm to mine 3D clusters over GST microarray data. We term the new algorithm gTRICLUSTER because it is based on a more general 3D cluster model than the one that TRICLUSTER is based on. gTRICLUSTER can find more biologically meaningful coherent gene clusters than TRICLUSTER can do. It also outperforms TRICLUSTER in robustness to noise. Experimental results on a real-world microarray dataset validate the effectiveness of the proposed new algorithm.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملIntegration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملExpression Profiling of Microarray Gene Signatures in Acute and Chronic Myeloid Leukaemia in Human Bone Marrow
Background Classification of cancer subtypes by means of microarray signatures is becoming increasingly difficult to ignore as a potential to transform pathological diagnosis nonetheless, measurement of Indicator genes in routine practice appears to be arduous. In a preceding published study, we utilized real-time PCR measurement of Indicator genes in acute lymphoid leukaemia (ALL) and acute m...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کامل